RELATIVELY UNIFORM CONVERGENCE OF SEQUENCES OF

FUNCTIONS*

RY

E. W. CHITTENDEN

- E. H. Moore† has introduced the notion of uniform convergence of a sequence of functions relative to a scale function. It is the purpose of this paper to study this type of convergence in the field of functions of a real variable.
- 1. The following definition of relatively uniform convergence is, for the case of a sequence of functions of a real variable, equivalent to the definition given by Moore.

A sequence $\{\mu_n\}$ of single-valued, real-valued functions μ_n of a variable p, ranging over a set $\mathfrak P$ of real elements p, converges relatively uniformly on $\mathfrak P$ in case there exist functions θ and σ , defined on $\mathfrak P$, and for every m an integer n_m (dependent on m), such that for every n greater than or equal to n_m the inequality

$$(1) m |\theta - \mu_n| \leq |\sigma| \ddagger$$

holds for every element p of \mathfrak{P} .

The function σ of the definition above is called a scale function. The sequence $\{\mu_n\}$ is said to converge uniformly relative to the scale function σ ; or more simply, relatively uniformly.

- 2. The following propositions are immediate consequences of the definition of relatively uniform convergence.§
- I. Uniformity of convergence relative to a constant scale function different from zero is equivalent to uniform convergence.
- II. Uniformity relative to σ implies uniformity relative to every function τ such that $|\tau| \ge |\sigma|$.

^{*} Presented to the Society March 22, 1913.

[†] An Introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910. This memoir will be cited as I. G. A.

 $[\]ddagger$ The relation (1) holds identically in p. In such cases we follow the usage of Moore (cf. I. G. A., p. 27) and omit the variable.

[§] Cf. I. G. A., p. 33, et seq. All propositions and theorems of this paper are stated for sequences of functions. The corresponding propositions for series of functions are readily inferred.

- III. Uniformity as to a function σ such that $A \leq |\sigma| \leq B$, where A and B are positive, implies uniform convergence.
- IV. If a sequence converges uniformly relative to a scale function σ , but does not converge uniformly, then σ is not bounded.
- V. If a sequence of functions is defined on a class \$\mathbb{B}\$ and if \$\mathbb{B}\$ may be divided into a finite number of parts such that the sequence converges relatively uniformly on each part, then the sequence converges relatively uniformly on \$\mathbb{B}.*
- VI. If a sequence converges relatively uniformly on \mathfrak{P} , \mathfrak{P} may be divided into a sequence $\{\mathfrak{P}_n\}$ such that no two sets \mathfrak{P}_{n_1} , \mathfrak{P}_{n_2} $(n_1 \neq n_2)$ have a common element, and such that on each \mathfrak{P}_n the sequence converges uniformly.
- 3. The following examples are illustrative of relative uniformity of convergence.
- (a) The class \mathfrak{P} is the interval $0 \leq p \leq 1$; the sequence $\{\mu_n\}$ such that $\mu_n(p) = 1/np \ (p \neq 0)$, $\mu_n(0) = 0$. This sequence does not converge uniformly, but the function $\sigma(p) = 1/p$ is effective as a scale function.
- (b) The class \mathfrak{P} is the infinite segment, $1 \leq p$; $\mu_n(p) = 1/np$. The sequence converges uniformly, but satisfies the stronger condition of uniform convergence relative to the scale function $\sigma(p) = 1/p$.
- 4. Using the notation of § 1, we denote by $\phi_n(p)$ the least upper bound of $|\theta(p) \mu_{n'}(p)|$ for all $n' \ge n$. If the sequence $\{\mu_n\}$ converges to θ uniformly, relative to a scale function $\sigma(p)$, then for every m there exists an n_m such that the inequality (1) is satisfied for all $n \ge n_m$. Hence we may write, in view of the definition of $\phi_n(p)$,

(2)
$$m \phi_{n_m}(p) \leq |\sigma(p)|.$$

As an immediate consequence of this result we have the following theorem: THEOREM 1. A necessary and sufficient condition that a sequence $\{\mu_n\}$ of functions μ_n converges relatively uniformly on $\mathfrak P$ to a limit function θ is that there exist a sequence $\{n_m\}$ of positive integers such that the sequence $m \phi_{n_m}(p)$ has an upper bound B(p) for every p.

5. Let \mathfrak{P} be any interval (a, b), and (r, q) a sub-interval of \mathfrak{P} in which the only point of non-uniform convergence; of a sequence $\{\mu_n\}$ is the end point q. The sequence $\{\mu_n\}$ being supposed convergent on (r, q), we have a function $A(p) \geq 1$ such that for every p in (r, q)

^{*}Cf. § 6 of this paper, proposition VIII, which is an extension of proposition V and the converse of VI.

[†] Other examples are given later in this paper. Cf. also I. G. A.

[‡] A point q is a point of non-uniform convergence in case the measure of non-uniformity of convergence of the sequence is greater than zero at q. Cf. W. H. Young, Proceedings of the London Mathematical Society, ser. 2, vol. I (1903-4) p. 91; also E. W. Hobson, Theory of Functions of a Real Variable, Cambridge University Press, p. 474, § 342; p. 484, § 349.

$$|\theta(p) - \mu_n(p)| \leq A(p).$$

We will now show that the sequence $\{\mu_n\}$ converges uniformly on (r,q) relative to the scale function $\sigma(p) = A(p)/(q-p)$; $\sigma(q) = A(q)$. For each m greater than 1/(q-p) choose p_m so that $q-p_m=1/m$. Then in the interval (r, p_m) , which contains no point of non-uniformity, the sequence $\{\mu_n\}$ converges uniformly, and therefore n_m exists so that for every $n \geq n_m$, p in (r, p_m) , and p = q,

$$m \mid \theta(p) - \mu_n(p) \mid \leq 1$$
.

But for every n, and p in the segment $p_m \leq p < q$,

$$m \mid \theta(p) - \mu_n(p) \mid \leq A(p)/(q-p).$$

The combination of the last two inequalities gives the desired convergence relative to σ .

The result just obtained is stated in the following theorem:

THEOREM 2. If q is on the left an isolated point of non-uniformity of convergence of a convergent sequence of functions, there exists a left neighborhood of q on which the sequence converges relatively uniformly.

A similar statement holds if q is isolated on the right.

6. We have occasion to use the following two propositions from general analysis.*

VII. If a sequence of functions is defined on an enumerable set $\mathfrak P$ and converges on $\mathfrak P$ it converges relatively uniformly on $\mathfrak P$.

VIII. If a sequence of functions is defined and converges relatively uniformly on each of a sequence of classes \mathfrak{P}_n it converges relatively uniformly on the class \mathfrak{P} of all elements which are in some class \mathfrak{P}_n , the least common superclass of the classes \mathfrak{P}_n .

7. Denote by $\mathfrak Q$ the set of all points q of non-uniform convergene of a sequence of functions converging on an interval $\mathfrak B$ to a definite limit function; by $\mathfrak Q'$ the derived set of $\mathfrak Q$, and by $\mathfrak Q^\circ$ the aggregate of the points of $\mathfrak Q$ and $\mathfrak Q'$. $\mathfrak Q^\circ$ is closed. The set complementary to $\mathfrak Q^\circ$ consists of the interior points of an enumerable set of non-overlapping intervals, in each of which the sequence of functions converges relatively uniformly (Theorem 2). It follows from proposition VIII that the sequence converges relatively uniformly on the complement of $\mathfrak Q^\circ$. Since the points of $\mathfrak Q^\circ$ which are not in $\mathfrak Q'$ form an enumerable set, we may state, in view of the preceding remarks and propositions V and VII, the following theorem:

THEOREM 3. A necessary and sufficient condition that a sequence of functions converges relatively uniformly on an interval $\mathfrak P$ is that it converges relatively uni-

Trans. Amer. Math. Soc. 14

^{*} Proposition VII is from I. G. A., p. 87. A simple proof may be given following the lines of the proof of Theorem 2 above. Proposition VIII is an immediate extension of VII.

formly on the derived set \mathbb{Q}' of the set \mathbb{Q} of the points of \mathfrak{P} which are points of non-uniformity.

Corollary I. If \mathfrak{Q}' is enumerable the sequence converges relatively uniformly on \mathfrak{B} .

COROLLARY II. If a sequence of functions does not converge relatively uniformly on $\mathfrak P$, the corresponding set $\mathfrak Q'$ is not enumerable, that is, $\mathfrak Q$ is dense on a perfect set.

8. The converse of corollary II above is not true, as is shown by the following example.* \mathfrak{P} is the interval (0,1). We define the sequence $\{\mu_n\}$ as follows: $\mu_n(p) = 0$, if p is irrational, zero, or equal to m/k (m and k relatively prime, and $k \neq n$); $\mu_n(p) = 1$, if p = m/n (m, n relatively prime). For this sequence of functions every p is a point of non-uniformity of convergence. However, the functions of the sequence are all zero on the irrational points. Hence by propositions V and VII the sequence converges relatively uniformly.

Osgood† has given an example of a sequence of *continuous* functions converging to zero as a limit for which the set $\mathfrak Q$ and its derivative form a perfect set, but which converges relatively uniformly because the sequence is identically zero on $\mathfrak Q$ and $\mathfrak Q'$.

9. For sequences of continuous functions we have the following theorem: Theorem 4. If a sequence of continuous functions converges on an interval \mathfrak{P} to a continuous limit in such a way that the set \mathfrak{Q} of all points of non-uniformity of convergence is dense on \mathfrak{P} , the sequence does not converge relatively uniformly.

To establish this theorem it is sufficient to show that for every sequence $\{n_m\}$ of positive integers n_m there exists a p determined by the sequence $\{n_m\}$ such that the sequence $\{m\phi_{n_m}(p)\}$; is not bounded. Theorem 4 follows in view of Theorem 1.

Let $\{n_m\}$ be any sequence of integers with index m, and $\{\mu_n\}$ denote the sequence of continuous functions of the theorem, converging to a continuous limit θ . Since the sequence $\{\mu_n\}$ does not converge uniformly in any sub-interval of $\mathfrak P$ there exists an integer m_1 with the following property: for every N there exists an n_1 greater than N and a p_1 (interior to $\mathfrak P$) such that

$$m_1 | \theta(p_1) - \mu_{n_1}(p_1) | > 1.$$

Since θ and μ_{n_1} are continuous, we may find an interval I_1 interior to \mathfrak{P} such that for every p in I_1

$$m_1 |\theta(p) - \mu_{n_1}(p)| > 1.$$

^{*}Cf. W. H. Young, Proceedings of the London Mathematical Society, Ser. 2, vol. I (1903-4), p. 94; also E. W. Hobson, Theory of Functions of a Real Variable, p. 487.

[†] Non-Uniform Convergence and the Integration of Series Term by Term, American Journal of Mathematics, vol. 19 (1897), p. 168.

[‡] Cf. § 4 for explanation of this notation.

Consequently, if we take N equal to n_{m_1} of the sequence $\{n_m\}$, we have

$$m_1 \phi_{n_{m_1}}(p) > 1$$

for every p in I_1 .

By similar reasoning we may show that there exists an m_2 and an interval I_2 interior to I_1 such for every p in I_2

$$m_2 \phi_{n_{m_2}}(p) > 2$$
.

Proceeding step by step in the manner indicated we may obtain a sequence $\{m_j\}$ and a sequence $\{I_j\}$ of closed intervals, each interior to the preceding, such that for every j we have on I_j

$$m_j \phi_{n_{m_i}}(p) > j$$
.

There must exist an element p° common to the intervals I_{j} . For such an element we have for every j

$$m_j \phi_{n_{m_i}}(p^{\circ}) > j$$
.

The sequence $m \phi_{n_m}(p^{\circ})$ is therefore unbounded, which was to be proved.

Osgood* has given an example of a sequence of continuous functions converging to a continuous limit for which the set $\mathfrak Q$ is dense on $\mathfrak P$. It follows from the theorem just proved that this sequence does not converge relatively uniformly.

10. A point of non-uniformity of convergence of a sequence of functions relative to a subset \Re of \Re is a point whose measure of non-uniformity of convergence relative to \Re is greater than zero.†

Evidently a point of non-uniformity of convergence relative to \Re is a point of non-uniformity of convergence relative to any set containing \Re , and therefore of \Re .

A slight extension of the proof of Theorem 4 serves to establish the following generalization of that theorem.

THEOREM 5. If a sequence of functions defined on $\mathfrak B$ and continuous on $\mathfrak R$, a perfect subset of $\mathfrak B$, converges on $\mathfrak B$ to a limit which is continuous on $\mathfrak R$ in such a fashion that the class $\mathfrak Q$ of all points of $\mathfrak R$ which are points of non-uniformity of convergence relative to $\mathfrak R$ is dense on $\mathfrak R$, then the sequence of functions does not converge relatively uniformly on $\mathfrak R$ or on $\mathfrak B$.

URBANA, ILL., May 7, 1913.

^{*·}Osgood, loc. cit., p. 171.

[†] Hobson, loc. cit., p. 484, § 349.